娱乐城白菜论坛

确保“耗电之王”物联网de高能效

安森美半导体 ? 2019-01-17 17:49 ? 次阅读

IoT

物联网(IoT)是一个广义的缩略语,涉及将物体联接到互联网云,以便使用算法和驱动操作来管理情况。物联网可对服务提供、效率、成本、可扩展性和可靠性产生颠覆性的影响,跨越行业和消费者的应用领域几乎是无限的和不可思议的多样化。分析师预估,联接的物联网节点数将在短短几年内达到数十亿,突显物联网的巨大潜力。与许多其他量子工业和消费娱乐城白菜论坛的飞跃一样,电子、创新工程和娱乐城白菜论坛是核心推动力。物联网成功的关键和核心是以高能效和高成本效益的方式感知、处理、控制和通信的能力。

毫无疑问,电子产业也许受到巨大而令人兴奋的广阔市场潜力的推动,已非常迅速地发展到人们对物联网及其支持的生态系统感兴趣和开发一系列活动。在许多情况下,这通过令人兴奋和使能的硬件和软件娱乐城白菜论坛刺激了创新。

物联网的“病毒波”是如此之强,以至于它影响到以前无人想到的物体,包括从电动工具、牙刷到植物和牲畜等各种各样的东西。我们可以把很多物体看成所谓的“数字双胞胎(digital-twins)”,就像为人们提供的“云-化身(cloud-avatars)”一样。

由联接的智能对象提供的洞察力使实际行动在效率收益、节省运营成本、改善总体生活质量等方面受益。而且,物联网有可能对单个网络中的数十亿个物体产生积极影响。为了帮助形象化这一点,想想人类大脑中无数的神经连接。

《哈佛商业评论》在2014年11月的几篇文章中描述了系统、和系统的系统之互联(Michael E.Porter和James E.Heppelmann所著的《智能互连的产品正如何改变竞争》)。这是“智能”所适用的,变得真实,甚至可能令人恐惧。

【图1:简化的物联网视图】

当今物联网的简化视图如图1所示。左边是物联网中最显而易见的“联接的”设备。右边是我们看不见的区域,但对挖掘性能至关重要。这是人工智能领域;其中有物联网服务器、硬盘驱动器、云计算、安全检查等等。

1能源挑战

物联网的两端都有独特的和截然不同的功耗要求,如图2所示。

【图2:物联网电源要求概览】

用一句话概述,我们有少量的云服务器(相对于物联网节点数),它们的功耗要求很高。它们都是一直运行,产生巨大的能源预算。在物联网生态系统的另一端,我们有大量的终端节点,当它们处于活跃状态时,功率需求有限,启动时间通常很短,和需要一种能源。

2018年6月,在法国南希举行的2018年世界材料论坛(World Material Forum)举行了一次题为“大数据/人工智能促进材料效率(Big Data/AI for Materials Efficiency)”的专门会议。斯坦福大学教授Reinhold Dauskardt的演讲稿给出了以下指标: “仅美国的数据中心的年耗电量估计为900亿千瓦时。这相当于34个500兆瓦的核电站反应堆,也就是法国核电站发电量的一半(约56座反应堆)。”

进一步强调数据中心/云计算服务器资源的电力需求的统计数据显示,2017年数据中心占全球用电量的3%。可能有些人认为这是个很低的比例,但由于世界对数据的生成、消耗和移动的无止境的渴望,有一种摩尔定律可适用于数据中心的能源消耗,即每四年增加一倍。按照这一速度,如果没有任何更改,那么理论上说,到2037年,计算机使用的电能将比目前全球生产的更多。

Reinhold Dauskardt接着总结道:“未来20年,我们面临的一个巨大挑战是通过设计与互联网相连、与电网断开的对象来减少物联网的能源消耗。”它们必须是省电的、自主的,并使用可想到的任何能源,如振动、热和光。”

在终端节点方面,正如前面所透露的,预测到2021年将部署数百亿个节点。它们中的每一个都会有非常低的功耗,再加上有限的启动时间,这可能会导致个别能源预算低,这是很好的。但这种急剧的增长仍与全球潜在的高耗电量相关。

2免电池终端节点的能量采集

高能效是当今所有产品和服务的关键要求,将来更甚,原因我们已说明。标准包括更低的运营成本、法规遵从性、生态意识和电池使用寿命。大量物联网边缘节点可能是无线和电池供电的,超低功耗对于寻求开发实用、可用方案的设备制造商更必要和重要。无线使部署的资本支出更低(即没有布线成本和重量减轻)。免电池方案提供了更低的操作成本,并且由于不需要电池维护服务,因此可以完全避免与能量产生相关的污染。

那么,我们如何将联接、感知和免电池操作结合起来呢?通过结合智能器件娱乐城白菜论坛和可用通信协议,单端节点仅需100微焦耳的预算就可以实现联接。迄今为止,许多现成的能量采集器能够满足这种水平的需求,能产生200到500微焦耳的能量。能量采集器可以由事件驱动(如开关)或连续采集,例如太阳能电池板或热电发电机。

3物联网中的互联

蓝牙是在物联网生态系统中占主导市场份额的一个互联标准。安森美半导体的RSL 10蓝牙低功耗系统单芯片(SoC)平台已确立了领先地位,并在物联网应用方面实现了新的行业基准。同时,ZigBee协议的节能特性也支持自供电的或能量采集对象的连接。同样,安森美半导体用于低功耗广域网(LPWAN)的专有和Sigfox®低于1GHz收发器和SoC产品阵容,使用户能扩展在窄带传输应用中的联接范围。

由于提供联接的SoC通常是物联网设备开发的首选,这些平台为OEM和开发物联网方案的服务提供商提供了强有力的支持。

【图3:安森美半导体的物联网开发套件】

4感知

能量采集智能无源传感器(SPS)和近场通信(NFC) EEPROM相辅相成以提供创新的高能效感知方案。此外,位置跟踪、环境光测量和运动检测也是了解机器和人类环境的关键。让这些器件工作,以提供现成的集成方案或可行的概念验证的原型是个令人兴奋的挑战。在这里,诸如安森美半导体的物联网开发套件(IDK)这样的工具可顺畅、加速和简化概念的开发,使用户能够快速、轻松地测量、汇总和分析物联网应用的数据。

物联网的世界是“系统的系统”-它需要一个系统级的方案来实施。安森美半导体汇聚并开发了用于物联网及其生态系统的娱乐城白菜论坛。物联网似乎势不可挡,将对工业和消费领域的几乎每一个领域的流程和“事物”产生积极影响。鉴于其潜在的规模,实现最佳能效至关重要。

5能量采集的未来

开发新的能源采集方案无疑具有很大的吸引力,不仅因为上述原因,还因为能量采集器本身主要依靠关键的供应来源。能够从运动中采集能量的超高效磁体的作用就像发电机。太阳能电池获取光子能量,有时将其储存在锂离子电池中。

现在采集器的主要原材料来源受到限制,并受到少数供应商的控制,位于数量非常有限的政府中。鉴于这些困难,世界范围内的研发界都认为这是个非常“热门”的话题。

如果我们希望这个颠覆性的机会实现预测的规模,人们只能鼓励并且通过电子行业专家如安森美半导体的娱乐城白菜论坛创新,支持和推动物联网环保方案的广泛部署。

原文标题:确保“耗电之王”物联网de高能效

文章出处:【微信号:onsemi-china,微信公众号:安森美半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

主题简介及亮点:本次直播,讲者将自己在智能硬件的18年研发及创业经验,结合践行了两年的物联网创业操盘——共享充电宝项目,
发表于 10-29 00:00 ? 13246次 阅读

医疗AI未来发展的四大趋势

市场研究公司CB Insights2018年发布的《顶尖医疗类人工智能趋势观察报告》,总结了全球人工....
的头像 墨记 发表于 04-21 07:23 ? 32次 阅读
医疗AI未来发展的四大趋势

AI on Horizon到底是什么趋势、定位与未来的详细资料说明

一如PC时代的Intel inside, 地平线希望AI on Horizon能够成为即将到来的人工....
发表于 04-20 10:43 ? 147次 阅读
AI on Horizon到底是什么趋势、定位与未来的详细资料说明

智能终端为什么发展前景这么好

智能终端的发展将带给各大行业新的发展空间。在北京举办的“第一届中国国际智能终端产业发展大会”新闻发布....
发表于 04-20 10:32 ? 241次 阅读
智能终端为什么发展前景这么好

中国电信专家表示MEC+CDN边缘部署可以促进运营商商业模式转型

边缘计算自诞生之日引起了行业的广泛关注,CDN也正在开展与MEC的密切合作,在MEC的助力下,未来C....
发表于 04-20 09:52 ? 272次 阅读
中国电信专家表示MEC+CDN边缘部署可以促进运营商商业模式转型

微软收购Express Logic 增加物联网生态链市场竞争力

4月18日,微软(Microsoft)宣布已收购开发实时操作系统(RTOS)的物联网(IoT)公司E....
发表于 04-20 09:24 ? 73次 阅读
微软收购Express Logic 增加物联网生态链市场竞争力

在检测行业,与人类视觉相比,机器视觉优势明显

机器视觉是通过计算机来模拟人类视觉功能,以让机器获得相关视觉信息和加以理解。
发表于 04-20 09:14 ? 263次 阅读
在检测行业,与人类视觉相比,机器视觉优势明显

高通人工智能开放日 5G+AI将带来巨大的市场效益

4月19日消息,高通在Qualcomm AI Day活动上,重点提及了5G+AI娱乐城白菜论坛的发展现状以及高....
发表于 04-19 17:29 ? 111次 阅读
高通人工智能开放日 5G+AI将带来巨大的市场效益

美国消费者和餐厅运营商即将首次尝试使用谷歌LLC的双工人工智能

这项服务将在43个州投入使用,用户可以通过Google智能助理预定餐厅。预订过程非常简单:用户只需告....
的头像 ssdfans 发表于 04-19 17:29 ? 931次 阅读
美国消费者和餐厅运营商即将首次尝试使用谷歌LLC的双工人工智能

小蚁科技研发的人工智能芯片即将落地 人工智能芯片迎来新发展

最近人工智能的各个话题都很火,从算法、软件到硬件。人工智能芯片作为硬件的重要组成部分,自然也是得到了....
发表于 04-19 17:26 ? 97次 阅读
小蚁科技研发的人工智能芯片即将落地 人工智能芯片迎来新发展

英伟达表示,人工智能已经可以可靠地用于诊断疾病和发现新药了

近年来,人工智能迅速发展,各大公司也在不断加大对人工智能的投入。英伟达表示,人工智能已经可以可靠地用....
的头像 ssdfans 发表于 04-19 17:19 ? 960次 阅读
英伟达表示,人工智能已经可以可靠地用于诊断疾病和发现新药了

人工智能和大数据将彻底改变银行为客户提供服务的方式

人工智能和机器学习是否可以检测消费者刷付银行卡?很多银行正在开发防止欺诈交易的系统和业务,以便银行可....
发表于 04-19 17:18 ? 54次 阅读
人工智能和大数据将彻底改变银行为客户提供服务的方式

物联网在体育运动中的应用

物联网传感器可以通过监测潜在伤害来提高运动员的安全性。智能鞋垫可以发现运动员脚部损伤情况,而智能头盔....
发表于 04-19 16:08 ? 123次 阅读
物联网在体育运动中的应用

如何看待物联网时代的入口之争

5G网络意味着更高的数据传输数量,更低的网络延时、更低的成本能耗以及更可靠的网络质量,可以满足更复杂....
发表于 04-19 16:03 ? 125次 阅读
如何看待物联网时代的入口之争

物联网将推动未来智慧医院事业的繁荣发展

随着手机和3G、4G网络的普及,我国经济的发展正式进入了移动互联网时代。互联网时代到来,给人们的生产....
发表于 04-19 15:51 ? 95次 阅读
物联网将推动未来智慧医院事业的繁荣发展

特斯拉市场扩展的瓶颈是什么?

在阶段性国内交付以后,Model 3在国内的状态也慢慢明确起来,目前在微博、车主群、车主回答和媒体渲....
的头像 汽车电子设计 发表于 04-19 15:49 ? 897次 阅读
特斯拉市场扩展的瓶颈是什么?

芯片行业竞争对手排排站 乐鑫科技营收能力远逊澜起科技

招股书中,乐鑫科技指出,公司存在客户较为集中的风险。公司客户主要为小米、涂鸦智能等行业内知名企业,2....
的头像 WShare市场投资芯片传感IoT硬件 发表于 04-19 15:18 ? 868次 阅读
芯片行业竞争对手排排站 乐鑫科技营收能力远逊澜起科技

特朗普政府2020财年预算申请公布 人工智能应用研究投资急剧增长

根据预算法案,2020财年美国国家安全预算总额增加340亿美元,达到7500亿美元,比上年增加5%。
的头像 中国人工智能学会 发表于 04-19 14:59 ? 273次 阅读
特朗普政府2020财年预算申请公布 人工智能应用研究投资急剧增长

发表于 04-19 14:54 ? 186次 阅读

一位网友便利用StyleGAN耗时5天创作出了999幅抽象派画作!

StyleGAN是英伟达提出的一种用于生成对抗网络的替代生成器体系结构,该结构借鉴了样式迁移学习的成....
的头像 新智元 发表于 04-19 14:44 ? 203次 阅读
一位网友便利用StyleGAN耗时5天创作出了999幅抽象派画作!

浙江大学新专业机器人工程和人工智能了解一下?

浙江大学机器人科教实践基地是浙江大学最重要的学生实践竞赛基地之一。该基地采用实践训练与竞赛、科研相结....
的头像 新智元 发表于 04-19 14:25 ? 247次 阅读
浙江大学新专业机器人工程和人工智能了解一下?

物联网助力智能家居发展 给我们带来很多惊喜

近年来,随着科技的迅速发展,人们的生产生活已经发生了许多变化。人脸识别自助登机、扫描二维码进行电子支....
发表于 04-19 13:45 ? 64次 阅读
物联网助力智能家居发展 给我们带来很多惊喜

最新《人工智能报告》展望中美俄三国AI策略和发展前景

2月12日,美国国防部首席信息官达纳?迪希(Dana Deasy)和联合人工智能中心(JAIC)的负....
的头像 新智元 发表于 04-19 11:41 ? 526次 阅读
最新《人工智能报告》展望中美俄三国AI策略和发展前景

台湾正在实现成为区块链中心的梦想

台湾的创业产业规模很小,而且常以住宅为单位,这导致其发展空间非常有限。随后,新公司需具备高效的特点,....
发表于 04-19 10:49 ? 39次 阅读
台湾正在实现成为区块链中心的梦想

如果把中学生的英语阅读理解选择题让AI来做,会做出什么水平?

与仅就问题感知或选择性文章表示进行计算的现有方法不同,DCMN能够计算文章感知问题表示和文章感知答案....
的头像 新智元 发表于 04-19 10:49 ? 278次 阅读
 如果把中学生的英语阅读理解选择题让AI来做,会做出什么水平?

人工智能拥有幽默感很危险?可能招致灾难性后果

被设计拥有幽默感的机器人可能很难理解究竟什么叫“好玩的事情”,甚至可能因此而杀人。
的头像 物联网娱乐城白菜论坛 发表于 04-19 10:30 ? 194次 阅读
人工智能拥有幽默感很危险?可能招致灾难性后果

日本政府高度重视人工智能 提出超智能社会5.0战略

对于中美两国在人工智能领域的强势领先地位,日本在资金投入和人才储备上都明显落后一截,对此又稍显不安和....
的头像 山东省物联网协会 发表于 04-19 10:20 ? 210次 阅读
日本政府高度重视人工智能  提出超智能社会5.0战略

5G助力物联网驶入快车道

5G凭借高带宽、低延迟、海量物联的三大优势,能够进一步推进人和物、物与物的连接,为物联网新的业务和应....
发表于 04-19 10:20 ? 89次 阅读
5G助力物联网驶入快车道

周志华等人新书:《演化学习:理论和算法的进展》正式上线!

《Evolutionary Learning: Advances in Theories and A....
的头像 新智元 发表于 04-19 10:16 ? 299次 阅读
周志华等人新书:《演化学习:理论和算法的进展》正式上线!

物联网主要有工业和消费两个领域。消费物联网方面,NI的方案主要是测量。而工业物联网是NI监测擅长的领域,例如风力发电要在...
发表于 04-19 09:40 ? 22次 阅读

OpenAI Five是如何训练的、为什么选择打Dota以及AI在打Dota的时候在想什么?

总决赛让OpenAI的科学家可以回答一个重要的研究问题:OpenAI Five在多大程度、以何种方式....
的头像 新智元 发表于 04-19 09:29 ? 373次 阅读
OpenAI Five是如何训练的、为什么选择打Dota以及AI在打Dota的时候在想什么?

  导读:当AirPods以独特的市场表现为苹果低迷的硬件营收打入强心剂后,智能耳机似乎正逐渐成为业界巨头的共同选择。特别是在...
发表于 04-19 09:28 ? 82次 阅读

如何促进物联网健康有序的发展

物联网应用涉及国民经济和人类社会生活的方方面面,然而近年来多领域发生安全事件:在智慧城市领域,201....
发表于 04-19 09:26 ? 110次 阅读
如何促进物联网健康有序的发展

中关村(首钢)人工智能创新应用产业园正式发布创新英雄召集令

首钢园相当于12个故宫的面积,是目前全球最大的、开放的人工智能创新应用实验场。更重要的是,冬奥组委办....
的头像 新智元 发表于 04-19 09:17 ? 387次 阅读
中关村(首钢)人工智能创新应用产业园正式发布创新英雄召集令

医疗产业与新娱乐城白菜论坛逐渐融合 物联网助力智慧医院蓬勃发展

近日,达实智能发布了《基于物联网应用的达实智慧医院白皮书》,从智慧医院的发展现状入手,总结智慧医院发....
发表于 04-19 08:51 ? 69次 阅读
医疗产业与新娱乐城白菜论坛逐渐融合 物联网助力智慧医院蓬勃发展

智能+将推动我国制造业高质量发展焕发经济新动能

“智能+”的重点领域是制造业。制造业是实体经济的主体,是娱乐城白菜论坛创新的主战场,也是供给侧结构性改革的重要....
发表于 04-19 08:46 ? 31次 阅读
智能+将推动我国制造业高质量发展焕发经济新动能

美国人文与科学院公布了2019年当选的院士名单

张亚勤是数字视频和人工智能领域的世界级科学家和企业家,拥有60多项美国专利,发表学术论文500多篇,....
的头像 新智元 发表于 04-19 08:45 ? 263次 阅读
美国人文与科学院公布了2019年当选的院士名单

中国制造业究竟发展的怎么样了

广州佳都集团有限公司董事长刘伟介绍,佳都是做人工智能的,与200多家企业有业务往来。今年以来,大家明....
发表于 04-19 08:43 ? 76次 阅读
中国制造业究竟发展的怎么样了

FAN302HLMY_F117 mWSaver? PWM控制器,适合低待机功耗电池充电器应用

信息FAN302HL_F117先进 PWM 控制器大大简化了要求对输出进行恒流调节的隔离电源的设计。 输出电流可以利用转换器初级端的信息进行精确估计,并通过一个内部补偿电路进行控制。 这消除了输出电流感应损耗,并省去了所有的外部控制电路(CC)。 绿色模式功能在突发模式下具有极低的工作电流(200?A),将轻载效率最大化,符合全世界的待机模式效率标准。 集成保护包括双级别逐脉冲限流、过压保护(OVP)、欠压保护和过温保护(OTP)。与传统的在次级端采用外部控制电路进行恒流调节相比,FAN302HL_F117可在降低总成本、组件数、尺寸以及重量的同时提高效率、生产率和系统可靠性。mWSaver? 娱乐城白菜论坛提供业内同级最佳的待机功耗...
发表于 04-18 21:10 ? 0次 阅读
FAN302HLMY_F117 mWSaver? PWM控制器,适合低待机功耗电池充电器应用

EFC2J013NUZ 用于1节锂离子电池保护的功率MOSFET,12 V,5.8mΩ,17 A,双N通道

信息该功率MOSFET具有低导通电阻。该设备适用于便携式机器的电源开关等应用。最适合单节锂离子电池应用。 高速开关 低栅极充电 2.5 V驱动器 2 kV ESD HBM 共漏极型 ESD二极管保护栅极 无铅,无卤素且符合RoHS标准 < / DIV>电路图、引脚图和封装图
发表于 04-18 21:04 ? 0次 阅读
EFC2J013NUZ 用于1节锂离子电池保护的功率MOSFET,12 V,5.8mΩ,17 A,双N通道

EFC4C012NL 用于3节锂离子电池保护的功率MOSFET,30 V,6.5mΩ,19 A,双N通道,WLCSP6

信息这款N沟道功率MOSFET采用安森美半导体的沟槽娱乐城白菜论坛生产,专门设计用于最大限度地降低栅极电荷和超低导通电阻。本设备适用于笔记本电脑的应用。 超低导通电阻 高速开关 低电流充电 Pb-免费,无卤素和符合RoHS标准
发表于 04-18 21:04 ? 0次 阅读
EFC4C012NL 用于3节锂离子电池保护的功率MOSFET,30 V,6.5mΩ,19 A,双N通道,WLCSP6

LC709511F 带USB Type-C&amp;功率放大器的移动电源控制器Quick Charge?3.0适用于1节锂离子和锂聚合物电池

信息 LC709511F是一款用于移动电源的锂离子开关充电器控制器。该设备具有控制移动电源应用的所有功能。它包括Type-C端口控制和Quick Charge 3.0 HVDCP。此外,该器件在USB数据线上自动施加2.0 V或2.7 V电压,用于需要电压的设备。内置开关控制器可输出5 V至12 V的快速充电电压。通过适当的外部MOSFET可实现USB Type-C和快速充电的高功率输出。 使用外部MOSFET轻松实现功率调节 降压充电/升压充电 支持快速充电3.0 HVDCP A类.5 V至12 V 支持无需外部IC的USB C型DRP 在USB数据线上应用2.7 V或2.0 V以满足设备要求 准备好的固件支持各种USB端口组合 支持USB BC1.2 电池电平测量 状态和电池电量显示带有4个LED 提升自动启动 热敏电阻检测功能 过电压/过电流检测 JEITA合规电池管理< / li> 安全定时器 低静态电流:低功耗模式下15μA 电路图、引脚图和封装图...
发表于 04-18 20:26 ? 17次 阅读
LC709511F 带USB Type-C&amp;功率放大器的移动电源控制器Quick Charge?3.0适用于1节锂离子和锂聚合物电池

LC709201F 电池电量计

信息 LC709201F是一款IC,可通过监测电池电压来测量1节锂离子二次电池的剩余电量,无需外部检测电阻,并检测剩余电量电流预测的电池功率水平。它监控电池电压并实现精确测量剩余电池电量的功能。此外,IC利用利用热敏电阻输入温度的温度校正功能,更加精确地实现了计算剩余电池电量的功能。 放电时的精度为±5% %/ 0%(环境工作温度为0°C至50°C) 剩余功率水平每秒测量四次,并在每次测量时计算。 我 C总线,支持从模式通信,最高支持100kHz...
发表于 04-18 20:25 ? 0次 阅读
LC709201F 电池电量计

LC709203F 单节锂电池电量计 [智能电量计]

信息LC709203F是一款应用在单节锂电池上的电量计。它是属于我们其中一款“智能电量计”系列中的成员,采用了我们独家的运算方法-“HG-CVR” 来实现高精度。即使在不稳定的条件下(例如:改变电池;温度,负载,老化及自放电),通过”HG-CVR“ 的运算原理,我们可以削减库仑电量计上的精密电阻的同时,保持相同精度的电量情报(RSOC)。我们提供了2种小封装以实现业界最小的PCB面积。客户只需要做非常少的参数设定就可以简单的,快速的应用我们的产品。“HG-CVR” 运算娱乐城白菜论坛无需外置精密电阻2.8%的RSOC精度即使老电池也可提供准确的RSOC自动修正误差可调整电池附近的寄生阻抗简单及快速应用低功耗 : 3 μA 的工作模式准确的电压检测 : ±7.5 mV准确的时钟 : ±3.5%低电量及低电压时有警报温度补偿 : 通过IIC输入温度的热敏情报检测电池的插入IIC通讯 (支持到400 kHz IIC)电路图、引脚图和封装图...
发表于 04-18 20:25 ? 0次 阅读
LC709203F 单节锂电池电量计 [智能电量计]

LC709501F 带USB Type-C&amp;功率放大器的移动电源控制器Quick Charge?3.0适用于1节锂离子和锂聚合物电池

信息 LC709501F是一款用于移动电源的锂离子开关充电器控制器。该设备具有控制移动电源应用的所有功能。它可以控制Type-C端口控制IC,包括Quick Charge 3.0 HVDCP。内置开关控制器可输出5 V至12 V的快速充电电压。通过适当的外部MOSFET可以实现USB Type-C和快速充电的高功率输出。 支持带端口控制IC的USB C型DRP 支持快速充电3.0 HVDCP A类。 5 V至12 V 便携式设备通信在智能手机上显示移动电源电池信息 (USB 2.0全速主机控制器)(规划) 降压充电/升压充电 低静态电流:低功耗模式下15μA 支持5 V至12 V操作 使用外部MOSFET轻松实现功率调节 自动USB检测 准备好的固件支持各种USB端口组合 支持USB BC1.2 电池电平测量 带有4个LED的状态和电池电量显示 提升自动启动 过电压/过电流检测 JEITA合规电池管理 安全计时器 电路图、引脚图和封装图...
发表于 04-18 20:25 ? 14次 阅读
LC709501F 带USB Type-C&amp;功率放大器的移动电源控制器Quick Charge?3.0适用于1节锂离子和锂聚合物电池

LC06111TMT 电池保护IC,集成功率MOSFET,单节锂离子电池

信息 LC06111TMT是用于带有集成功率MOSFET的1节锂离子二次电池的保护IC。它还集成了高精度检测电路和检测延迟电路,以防止电池过充电,过放电,过流放电和过流充电。电池保护系统只能由LC06111TMT和少量外部元件制造。 充放电功率MOSFET集成 导通电阻(充放电总量)8.4mΩ(典型值) 高精度检测电压/电流在Ta = 25°C,VCC = 3.7 V 过充电检测±25 mV 过放电检测±50 mV 充电过流检测±0.9 A 放电过流检测±0.9 A 放电/充电过流检测补偿功率FET的温度依赖性 电路图、引脚图和封装图...
发表于 04-18 20:25 ? 0次 阅读
LC06111TMT 电池保护IC,集成功率MOSFET,单节锂离子电池

LC05112CMT 电池保护控制器,集成MOSFET,1节锂离子电池

信息 LC05112CMT是一款用于1节锂离子二次电池的保护IC,内置功率MOS FET。它还集成了高精度检测电路和检测延迟电路,以防止电池过充电,过放电,过电流放电和过电流充电。电池保护系统只能由LC05112CMT和少量外部元件制成。 集成功率MOSSFET 低Rsson11mΩ PKG熔丝熔断器 减少过电流检测的分散 降低电流 电路图、引脚图和封装图
发表于 04-18 20:22 ? 0次 阅读
LC05112CMT 电池保护控制器,集成MOSFET,1节锂离子电池

LC05132C01MT 电池保护控制器,集成MOSFET,1节锂离子电池

信息 LC05132C01MT是用于带有集成功率MOS FET的1节锂离子二次电池的保护IC。它还集成了高精度检测电路和检测延迟电路,以防止电池过充电,过放电,过电流放电和过电流充电。此外,主系统可以通过关闭充电FET和LC05132C01MT的放电FET一段时间来执行自身的上电复位,并带有复位信号。电池保护系统只能由LC05132C01MT和少量外部元件制成。 集成功率MOSFET 低Rsson11mΩ PKG熔丝熔断器 减少过流检测的分散 复位功能 复位释放时间:5s(典型值)[Ta = 25°C] 电路图、引脚图和封装图...
发表于 04-18 20:22 ? 0次 阅读
LC05132C01MT 电池保护控制器,集成MOSFET,1节锂离子电池

LC05132C01NMT 电池保护控制器,集成MOSFET,1节锂离子电池

信息 LC05132C01NMT是用于带有集成功率MOS FET的1节锂离子二次电池的保护IC。它还集成了高精度检测电路和检测延迟电路,以防止电池过充电,过放电,过电流放电和过电流充电。此外,主系统可以通过关闭LC05132C01NMT的充电FET和放电FET一段时间来执行自身的上电复位,并带有复位信号。电池保护系统只能由LC05132C01NMT和少量外部元件制成。 集成功率MOSFET 低Rsson11mΩ PKG熔丝微调 减少过流消除的分散 复位功能 复位释放时间:1s(典型值)[Ta = 25°C] 电路图、引脚图和封装图...
发表于 04-18 20:22 ? 0次 阅读
LC05132C01NMT 电池保护控制器,集成MOSFET,1节锂离子电池

LC05711ARA 电池保护IC,集成功率MOSFET,单节锂离子电池

信息 LC05711ARA是一款带有集成功率MOSFET的单节锂离子二次电池保护IC。它还集成了高精度检测电路和检测延迟电路,以防止电池过充电,过放电,过电流放电和过电流充电。电池保护系统只能由LC05711ARA和少量外部元件制成。 集成了充放电功率MOSFET 导通电阻(充放电总量)4.8mΩ(典型值) ) Ta = 25°C时高精度检测电压/电流,VCC = 3.7 V 过充电检测±25 mV 过放电检测±50 mV 充电过流检测±0.7 A 放电过流检测±0.7 A 放电/充电过流检测得到补偿功率FET的温度依赖性 ECP30 WLP封装 电路图、引脚图和封装图...
发表于 04-18 20:22 ? 0次 阅读
LC05711ARA 电池保护IC,集成功率MOSFET,单节锂离子电池

LC05111CMT 电池保护控制器,集成MOSFET,1节锂离子电池

信息 LC05111CMT是一款电池保护电路,用于带有集成功率MOSFET的1节锂离子二次电池。此外,它集成了高精度检测电路和检测延迟电路,以防止电池过充电,过放电,过电流放电和过电流充电。电池保护系统只能通过LC05111CMT和少量外部元件制造。 集成功率MOSFET 低Rsson11mΩ PKG熔丝熔断器 减少过电流检测的分散 电路图、引脚图和封装图
发表于 04-18 20:22 ? 4次 阅读
LC05111CMT 电池保护控制器,集成MOSFET,1节锂离子电池

BQ40Z60 bq40z60 完整多节电池管理器

信息描述德州仪器 (TI) bq40z60 器件是一款可编程的电池管理单元,其集成有电池充电控制输出、电量监测和相关保护功能,能够完全自主地操作 2 至 4 节串联锂离子和锂聚合物电池组。此架构在电量监测处理器与电池充电器控制器之间实现内部通信,从而在系统负载瞬变和适配器电流限制期间根据外部负载条件和电源路径来源管理来优化充电量。可通过 NFET、电感和感测电阻等外部元件针对具体功率传输情况来调节充电电流效率。 该器件提供了电池阵列和系统安全功能,包括电池放电过流、充电短路和放电短路保护,以及针对 N 沟道 FET 的 FET 保护、内部 AFE 看门狗和电池断开连接检测。器件可通过固件提供更多保护 功能, 包括过压、欠压、过热等。特性全集成 2 节至 4 节串联锂离子或锂聚合物电池管理单元Pack+ 上的输入电压范围:2.5V 至 25V电池充电器效率 > 92%电池充电器工作范围:4V 至 25V针对外部 N 沟道场效应晶体管 (NFET) 的电池充电器 1MHz 同步降压控制器软启动,限制浪涌电流外部开关限流保护可编程充电支持 JEITA/增强型充电模式 电量监测用于库伦计数器的 16 位高分辨率积分器16 位模数转换器 (ADC),通过 16 通道多路复用器...
发表于 04-18 19:10 ? 8次 阅读
BQ40Z60 bq40z60 完整多节电池管理器

BQ34Z110 用于铅酸电池的采用 Impedance Track? 娱乐城白菜论坛的宽量程电量测量计

信息描述 德州仪器 (TI) bq34z110 是一款独立于电池串联配置之外工作的电量计解决方案,此解决方案支持铅酸化学电池。 通过一个外部电压转换电路,可支持 4V 至 64V 的电池,可对此电路进行自动控制以减少系统功耗。bq34z110 器件提供几个接口选项,其中包括一个 I2C 从接口、一个 HDQ 从接口、一个或者四个直接 LED 接口、和一个警报输出引脚。 此外,bq34z110 提供对于外部端口扩展器(支持多于四个 LED)的支持。特性 支持铅酸化学电池 使用获得专利的 Impedance Track 娱乐城白菜论坛,用于电压范围为 4V 至 64V 的电池老化补偿 自放电补偿支持的电池容量超过 65Ahr 支持高于 32A 的充放电电流 外部负温度系数 (NTC) 热敏电阻支持 支持两线制 I2C 和与主机系统进行通信的 HDQ 单线制通信接口 安全哈希算法 (SHA)-1,哈希消息认证码 (HMAC) 认证 一个或者四个直接显示控制 五个 LED 和通过端口扩展器的更多显示 精简的功率模式(典型电池组运行范围条件)正常运行:平均值 < 140?A 睡眠模式:平均值 < 64?A 完全睡眠模式:平均值 < 19?A 封装:14 引脚薄型小外形尺寸封装 (TSSOP)电路图、引脚图和封装图...
发表于 04-18 19:10 ? 2次 阅读
BQ34Z110 用于铅酸电池的采用 Impedance Track? 娱乐城白菜论坛的宽量程电量测量计

BQ40Z50 1 节、2 节、3 节和 4 节锂离子电池组管理器

信息描述 bq40z50 器件采用已获专利的 Impedance Track 娱乐城白菜论坛,是一款基于电池组的单芯片全集成解决方案,针对 1 节、2 节、3 节和 4 节串联锂离子或锂聚合物电池组提供电量监测、保护及认证等一些列丰富的功能。bq40z50 器件利用其集成的高性能模拟外设,测量锂离子或锂聚合物电池的可用容量、电压、电流、温度和其他关键参数,保留准确的数据记录,并通过 SMBus v1.1 兼容接口将这些信息报告给系统主机控制器。 bq40z50 器件为主机系统提供最大的功率和电流,从而支持 Turbo 升压模式。 该器件还支持电池跳变点,从而在预设的充电阈值状态向主机系统发送 BTP 中断信号。 bq40z50 针对过压、欠压、过流、短路电流、过载和过热情况,以及其他电池组和电池相关故障提供基于软件的 1 级和 2 级安全保护。具有针对认证码密钥的安全内存的 SHA-1 认证能够识别真正的电池组。这个紧凑的 32 导线 QFN 封装在尽可能地提供电池电量测量应用的功能性和安全性的同时,最大限度地降低解决方案成本和智能电池的尺寸。特性全集成 1 节、2 节、3 节和 4 节串联锂离子或锂聚合物电池组管理器及保护 下一代已获专利的 Impedance Track 娱乐城白菜论坛可准确测量锂离子和锂聚合物电池...
发表于 04-18 19:10 ? 4次 阅读
BQ40Z50 1 节、2 节、3 节和 4 节锂离子电池组管理器

BQ27545-G1 单节、电池组端 Impedance Track 电量监测计

信息描述bq27545-G1 锂离子电池电量计是一款微控制器外设,此外设能够提供针对单节锂离子电池组的电量计量。此器件只需开发较少的系统微控制器固件即可实现精确的电池电量计量。bq27545-G1 安装于电池组内或者带有一个嵌入式电池(不可拆卸)的系统主板上。 bq27545-G1 使用已经获得专利的 Impedance Track? 算法来进行电量计量,并提供诸如剩余电量 (mAh)、充电状态 (%)、续航时间(最小值)、电池电压 (mV) 和温度 (°C) 等信息。该器件还提供针对内部短路或电池端子断开事件的检测功能。bq27545-G1 还 具有 针对安全电池组认证(使用 SHA-1/HMAC 认证算法)的集成支持功能。 该器件还采用 15 焊球 Nano-Free? DSBGA 封装 (2.61 mm × 1.96 mm),非常适合空间受限的 应用。特性适用于 1 节 (1sXp) 锂离子电池的电池电量计 应用 支持高达 14500mAh 的容量 微控制器外设提供:用于电池温度报告的内部或者外部温度传感器安全哈希算法 (SHA)-1 / 哈希消息认证码 (HMAC) 认证使用寿命的数据记录64 字节非易失性暂用闪存 基于已获专利的 Impedance Track?娱乐城白菜论坛的电池电量计量用于电池续航能力精确预测的电池放电模拟曲线针对电池老化、电...
发表于 04-18 19:10 ? 6次 阅读
BQ27545-G1 单节、电池组端 Impedance Track 电量监测计

BQ27010 单节锂电池和锂聚合物电池电量监测计 IC

信息描述The bqJUNIOR? series are highly accurate stand-alone single-cell Li-Ion and Li-Pol battery capacity monitoring and reporting devices targeted at space-limited, portable applications. The IC monitors a voltage drop across a small current sense resistor connected in series with the battery to determine charge and discharge activity of the battery. Compensations for battery age, temperature, self-discharge, and discharge rate are applied to the capacity measurments to provide available time-to-emptyinformation across a wide range of operating conditions. Battery capacity is automatically recalibrated, or learned, in the course of a discharge cycle from full to empty. Internal registers include current, capacity, time-to-empty, state-of-charge, cell temperature and voltage, status, and more.The bqJUNIOR can operate directly from single-cell Li-Ion and Li-Pol batteries and communicates to the system over a HDQ one-wire or I2C serial interface.特...
发表于 04-18 19:10 ? 6次 阅读
BQ27010 单节锂电池和锂聚合物电池电量监测计 IC

BQ27541-G1 具有集成 LDO 的电池组端 Impedance Track 电池电量监测

信息 Texas仪器bq27541-G1锂离子电池电量计是一种微控制器外围设备,可为单节锂离子电池组提供电量计量。该器件几乎不需要系统微控制器固件开发来实现精确的电池电量计量bq27541-G1位于电池组内或系统主板上,带有嵌入式电池(不可拆卸)。 bq27541-G1使用获得专利的Impedance Track?算法进行电量计量,并提供剩余电池容量(mAh),充电状态(%)等信息,运行时间为空(最小),电池电压(mV)和温度(°C)。它还提供内部短路或制表断开事件的检测。 bq27541-G1还使用SHA-1 / HMAC认证算法集成了对安全电池组认证的支持 优势特点 用于1系列(1sXp)锂离子电池应用的电池电量计32Ahr容量 微控制器外设提供: 精确的电池电量计支持高达32Ahr 用于电池温度报告的内部或外部温度传感器 SHA-1 / HMAC认证 终身数据记录 > 64字节的非易失性划痕垫FLASH 基于专利阻抗跟踪娱乐城白菜论坛的电池电量计量 模型电池放电曲线,用于准确的时间到空预测 自动调整电池老化,电池自放电,&n温度/速率低效 低值检测电阻(5mΩ至20mΩ) 高级电量计功能 内部短暂检测 标签断开检测 ...
发表于 04-18 19:10 ? 6次 阅读
BQ27541-G1 具有集成 LDO 的电池组端 Impedance Track 电池电量监测

BQ24278 具有电源路径的 2.5A 单输入单节开关模式锂离子电池充电器

信息描述 bq24278 高度集成的单节锂离子电池充电器和系统电源路径管理器件针对空间有限且带有高容量电池的便携式应用。 单节充电器由一个诸如 AC(交流)适配器或者无线电源的专用充电源供电运行。此电源路径管理特性使得 bq24278 能够在为电池独立充电的同时从一个高效 DC 到 DC 转换器为系统供电。 此充电器一直监视电池电流并在系统负载所需电流超过输入电流限制时减少充电电流。 这样可实现正常的充电终止和定时器运行。 系统电压被调节至电池电压,但不会下降至低于 3.5V。 最小系统电压支持使得此系统能够与一个残次品或者有缺失的电池组一起运行并且即使在电池完全放电或者无电池的情况下也可实现瞬时系统启动。 当适配器不能传送峰值系统电流时,此电源路径管理架构还允许电池补充系统电流需要。 这样可使用较小的适配器。 电池充电经历以下三个阶段:充电,恒定电流和恒定电压。 在所有的充电阶段,一个内部控制环路监视 IC 结温并且在超过内部温度阀值的情况下减少充电电流。 此外,bq24278 提供一个基于电压的电池组热敏电阻器监控输入 (TS) 来监控电池温度以保证安全充电。特性 具有独立电源路径控制的高效开关模式充电器从深度放电电池或者在无电...
发表于 04-18 19:10 ? 4次 阅读
BQ24278 具有电源路径的 2.5A 单输入单节开关模式锂离子电池充电器

如何使用空间合作关系进行基站流量预测模型的资料说明

针对传统的自回归积分移动平均(ARIMA)模型和长短时记忆(LSTM)单元在基站流量预测中没有利用基....
发表于 04-18 17:29 ? 49次 阅读
如何使用空间合作关系进行基站流量预测模型的资料说明

人工智能成中关村“金字招牌”

AI不是刷榜炫技,而是真正解决产业实际问题。
的头像 北京科技政策法规宣讲团 发表于 04-18 16:39 ? 364次 阅读
人工智能成中关村“金字招牌”

物联网将改变未来物流产业的发展

智能物流,是基于互联网、物联网娱乐城白菜论坛的深化应用,是利用先进的信息采集、处理、管理、流通,智能分析等娱乐城白菜论坛....
发表于 04-18 16:15 ? 145次 阅读
物联网将改变未来物流产业的发展

AI黄金时代 机遇与隐忧并存

芳菲四月,AI芯片再次站到聚光灯下,成为焦点:2日,国产芯片概念股悄然走高,紫光国微以及四维图新等多....
发表于 04-18 16:11 ? 128次 阅读
AI黄金时代 机遇与隐忧并存

多重利好因素综合作用 中国“芯”发展迅猛

如今,随着大数据的发展、机器算法娱乐城白菜论坛、机器学习能力的不断提升,全球人工智能产业进入了新一轮的爆发期,....
发表于 04-18 16:06 ? 117次 阅读
多重利好因素综合作用 中国“芯”发展迅猛

物联网娱乐城白菜论坛可以实现智慧医院的智能化

近日,达实智能发布了《基于物联网应用的达实智慧医院白皮书》,从智慧医院的发展现状入手,总结智慧医院发....
发表于 04-18 16:05 ? 125次 阅读
物联网娱乐城白菜论坛可以实现智慧医院的智能化

物联网将如何改变交通运输行业

每年有近120万人死于车祸,平均每天约有3,287人死亡。专家认为,当自动驾驶汽车开始取代人类驾驶汽....
发表于 04-18 15:52 ? 86次 阅读
物联网将如何改变交通运输行业

AI专家讲座: 不懂编程没关系,邀请您来学AI 活动概述:本活动是现场讲座,由台湾知名AI教育专家、金门创新学院院长、台湾...
发表于 04-18 15:51 ? 137次 阅读

您好,我在U1604B上遇到了一些麻烦。 它显示不正确的时间和日期,如计算机备用电池耗尽。 它是在U1604B上设置时间和日期之...
发表于 04-18 15:32 ? 34次 阅读

NEC Energy Solutions公司部署的电池储能系统解决方案

这个容量为18MW/7.5MWh的电池储能系统由瑞士最大的配电厂商EKZ公司拥有和运营,主要用于频率....
的头像 高工锂电 发表于 04-18 14:51 ? 93次 阅读
NEC Energy Solutions公司部署的电池储能系统解决方案

PCB双面板的画法及布线技巧

在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板。尽管多层板(4层、6层及8....
发表于 04-18 14:50 ? 239次 阅读
PCB双面板的画法及布线技巧

松下在特斯拉内华达州电池厂的电池生产线一直在约束着Model 3的产量

如图所示,马斯克在自己的推特(Twitter)上写道,松下在特斯拉超级工厂的电池生产线产能仅约为24....
的头像 高工锂电 发表于 04-18 14:25 ? 210次 阅读
松下在特斯拉内华达州电池厂的电池生产线一直在约束着Model 3的产量

物联网能在对抗地震这样的天灾中发挥作用吗?

预防分为几个阶段,在社会和个人防范意识与常识方面的提升、在灾害提前预警方面、在地震监测方面……随着智....
的头像 司南物联 发表于 04-18 13:45 ? 402次 阅读
物联网能在对抗地震这样的天灾中发挥作用吗?

物联网的诞生、重要性、娱乐城白菜论坛关系、对人类走向未来的帮助

同样一项娱乐城白菜论坛,因为物联网的发展速度,效果已经大不一样了。互联网在连接娱乐城白菜论坛方面日新月异,所以才有了高解....
的头像 司南物联 发表于 04-18 12:43 ? 291次 阅读
物联网的诞生、重要性、娱乐城白菜论坛关系、对人类走向未来的帮助

慧云信息五谷耘立方重大功能“报表云”全新上线

伴随着物联网、移动互联网等信息娱乐城白菜论坛的飞速发展,尤其是智能设备的普及应用,近年来农业数据呈爆发增长趋势....
的头像 慧云物联网 发表于 04-18 12:39 ? 203次 阅读
慧云信息五谷耘立方重大功能“报表云”全新上线

虽然Java是物联网开发中使用最多的语言,但是Java和Python在物联网开发的不同子域中紧随其后。物联网发展的未来可能仍然是多...
发表于 04-18 10:49 ? 91次 阅读

如何使用CC2530单片机进行多点温度采集系统的设计实验说明

多点温度采集有利于分析整个设备或系统的温度,改善被控温度的娱乐城白菜论坛指 标,提高产品的质量和数量,因而,....
发表于 04-18 08:00 ? 52次 阅读
如何使用CC2530单片机进行多点温度采集系统的设计实验说明

机械工程和人工智能之间,主要有什么关系
发表于 04-17 12:12 ? 28次 阅读

目前在做一个DC/DC,,前端为电池供电,输出5V/1.5A,由于启动时电池电压有时候会拉倒5.5V左右,选了TPS54239和TPS5...
发表于 04-17 08:56 ? 73次 阅读

智能化商业的浪潮下,新商业模式纷纷涌现,智能制造给行业格局带来全新可能和颠覆性变革,亟需一系列智能制造行业的交流盛会,助...
发表于 04-16 15:33 ? 2379次 阅读

智能化商业的浪潮下,新商业模式纷纷涌现,智能制造给行业格局带来全新可能和颠覆性变革,亟需一系列智能制造行业的交流盛会,助...
发表于 04-16 15:28 ? 2246次 阅读